- equipped Hilbert space
- оснащённое гильбертово пространство
English-russian dictionary of physics. 2013.
English-russian dictionary of physics. 2013.
Rigged Hilbert space — In mathematics, a rigged Hilbert space (Gelfand triple, nested Hilbert space, equipped Hilbert space) is a construction designed to link the distribution and square integrable aspects of functional analysis. Such spaces were introduced to study… … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Compact operator on Hilbert space — In functional analysis, compact operators on Hilbert spaces are a direct extension of matrices: in the Hilbert spaces, they are precisely the closure of finite rank operators in the uniform operator topology. As such, results from matrix theory… … Wikipedia
Hilbert scheme — In algebraic geometry, a branch of mathematics, a Hilbert scheme is a scheme that is the parameter space for the closed subschemes of some projective space (or a more general scheme), refining the Chow variety. The Hilbert scheme is a disjoint… … Wikipedia
Vector space — This article is about linear (vector) spaces. For the structure in incidence geometry, see Linear space (geometry). Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is… … Wikipedia
Indefinite inner product space — In mathematics, in the field of functional analysis, an indefinite inner product space :(K, langle cdot,,cdot angle, J) is an infinite dimensional complex vector space K equipped with both an indefinite inner product :langle cdot,,cdot angle and… … Wikipedia
Dual space — In mathematics, any vector space, V, has a corresponding dual vector space (or just dual space for short) consisting of all linear functionals on V. Dual vector spaces defined on finite dimensional vector spaces can be used for defining tensors… … Wikipedia
Lp space — In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p norm for finite dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue (Dunford Schwartz 1958, III.3),… … Wikipedia
Sobolev space — In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of Lp norms of the function itself as well as its derivatives up to a given order. The derivatives are understood in a suitable weak sense… … Wikipedia
Energetic space — In mathematics, more precisely in functional analysis, an energetic space is, intuitively, a subspace of a given real Hilbert space equipped with a new energetic inner product. The motivation for the name comes from physics, as in many physical… … Wikipedia
Compact space — Compactness redirects here. For the concept in first order logic, see compactness theorem. In mathematics, specifically general topology and metric topology, a compact space is an abstract mathematical space whose topology has the compactness… … Wikipedia